175 lines
6.0 KiB
Python
175 lines
6.0 KiB
Python
import pandas as pd
|
|
import logging
|
|
import json
|
|
import jmespath
|
|
import regex as re
|
|
from pre_processing import pre_processing
|
|
from processing import processing
|
|
from post_processing import post_processing
|
|
|
|
# Configure logging
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s",
|
|
)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def extract_value(blob, expression):
|
|
try:
|
|
return jmespath.search(expression, blob)
|
|
except Exception:
|
|
return None
|
|
|
|
# Coalesce function to return the first non-None value
|
|
def coalesce(*args):
|
|
for value in args:
|
|
if value is not None:
|
|
return value
|
|
return None
|
|
|
|
# New sanitize blob function
|
|
def sanitize_blob(blob):
|
|
try:
|
|
blob = re.sub(r'"(\w+)":"(\{[^}]+\})"', r'"\1":\2', blob)
|
|
blob = re.sub(r'"tps_vendor_raw_response"\s*:\s*"\?\{', '"tps_vendor_raw_response":{', blob)
|
|
blob = blob.replace('\\"', '"')
|
|
blob = blob.replace('\\n', '')
|
|
blob = blob.replace('\\t', '')
|
|
blob = blob.replace('\\\\', '')
|
|
blob = re.sub(r'(\}\})"', r'\1', blob)
|
|
blob = re.sub(r',\s*([\}\]])', r'\1', blob)
|
|
return json.loads(blob)
|
|
except json.JSONDecodeError as e:
|
|
logger.error(f"JSON Decode Error: {e}")
|
|
error_pos = e.pos
|
|
snippet = blob[max(0, error_pos - 50): error_pos + 50]
|
|
logger.error(f"Error near:\n{snippet}")
|
|
return None
|
|
#---------------- Sanitise ends here
|
|
|
|
# Function to extract a value using JMESPath
|
|
# Expressions to extract values
|
|
expressions = {
|
|
"first_seen_days": [
|
|
"tps_vendor_raw_response.query.results[0].first_seen_days",
|
|
"emailage.emailriskscore.first_seen_days"
|
|
],
|
|
"ea_score": [
|
|
"tps_vendor_raw_response.query.results[0].EAScore",
|
|
"emailage.emailriskscore.eascore"
|
|
],
|
|
"email_creation_days": [
|
|
"tps_vendor_raw_response.query.results[0].email_creation_days"
|
|
],
|
|
"summary_risk_score": ["summary_risk_score"],
|
|
"digital_id_trust_score_rating": ["digital_id_trust_score_rating"],
|
|
"os_version": ["os_version"],
|
|
"account_email_worst_score": ["account_email_worst_score"],
|
|
"true_ip_score": ["true_ip_score"],
|
|
"ip_net_speed_cell": [
|
|
"tps_vendor_raw_response.query.results[0].ip_netSpeedCell",
|
|
# "true_ip_connection_type"
|
|
],
|
|
"account_email_score": ["account_email_score"],
|
|
"true_ip_worst_score": ["true_ip_worst_score"],
|
|
"proxy_ip_worst_score": ["proxy_ip_worst_score"],
|
|
"proxy_ip_score": ["proxy_ip_score"],
|
|
"fuzzy_device_score": ["fuzzy_device_score"],
|
|
"ip_region_confidence": ["tps_vendor_raw_response.query.results[0].ip_regionconf"],
|
|
"true_ip_state_confidence": ["true_ip_state_confidence"],
|
|
"fuzzy_device_worst_score": ["fuzzy_device_worst_score"],
|
|
"digital_id_confidence_rating": ["digital_id_confidence_rating"]
|
|
}
|
|
|
|
|
|
def __main__(
|
|
#Application->
|
|
application_key: str,
|
|
application_timestamp: str,
|
|
application_ssn : str,
|
|
application_email_address: str,
|
|
application_bank_account_number: str,
|
|
application_is_rejected: str,
|
|
application_date_of_birth: str,
|
|
#uprovaloanapplication->
|
|
educationlevel:str,
|
|
employmentstatus: str,
|
|
lengthatbank: str,
|
|
lengthatjob: str,
|
|
ownhome: str,
|
|
payfrequency: str,
|
|
monthsatresidence: str,
|
|
#thxresponse->
|
|
EventType: str,
|
|
DigitalIdConfidence: str,
|
|
RiskRating: str,
|
|
TmxSummaryReasonCode: str,
|
|
TrueIpGeo: str,
|
|
Blob:str,
|
|
DeviceId:str,
|
|
FuzzyDeviceId: str
|
|
) -> dict:
|
|
|
|
# Convert input parameters into a flat dictionary
|
|
data = {
|
|
"application_key" : application_key,
|
|
"application_timestamp" : application_timestamp,
|
|
"application_ssn " : application_ssn ,
|
|
"application_email_address" : application_email_address,
|
|
"application_bank_account_number" : application_bank_account_number,
|
|
"application_is_rejected" : application_is_rejected,
|
|
"application_date_of_birth" : application_date_of_birth,
|
|
"educationlevel" : educationlevel,
|
|
"employmentstatus" : employmentstatus,
|
|
"lengthatbank" : lengthatbank,
|
|
"lengthatjob" : lengthatjob,
|
|
"ownhome" : ownhome,
|
|
"payfrequency" : payfrequency,
|
|
"monthsatresidence" : monthsatresidence,
|
|
"EventType" : EventType,
|
|
"DigitalIdConfidence" : DigitalIdConfidence,
|
|
"RiskRating" : RiskRating,
|
|
"TmxSummaryReasonCode" : TmxSummaryReasonCode,
|
|
"TrueIpGeo" : TrueIpGeo,
|
|
"Blob" : Blob,
|
|
"DeviceId" : DeviceId,
|
|
"FuzzyDeviceId" : FuzzyDeviceId
|
|
}
|
|
|
|
# Convert dictionary to a single-row DataFrame
|
|
combined_df = pd.DataFrame([data])
|
|
combined_df.columns = combined_df.columns.str.lower()
|
|
combined_df["application_email_address"] = combined_df["application_email_address"].str.lower()
|
|
if Blob:
|
|
combined_df["blob"] = combined_df["blob"].apply(sanitize_blob)
|
|
|
|
# Step 2: Extract values using the expressions dictionary
|
|
for column, expressions_list in expressions.items():
|
|
combined_df[column] = combined_df["blob"].apply(lambda x: coalesce(*[extract_value(x, expr) for expr in expressions_list]))
|
|
|
|
logger.info("pre_flowx data")
|
|
logger.info(combined_df.iloc[0].drop('blob').to_dict())
|
|
else:
|
|
for column, expressions_list in expressions.items():
|
|
combined_df[column] = None
|
|
logger.info("pre_flowx data")
|
|
logger.info(combined_df.iloc[0].to_dict())
|
|
pre_processed_data = pre_processing(combined_df)
|
|
# logger.info(f"pre_processed_data: {pre_processed_data}")
|
|
logger.info("pre_processed data")
|
|
logger.info(pre_processed_data.iloc[0].to_dict())
|
|
df = processing(pre_processed_data)
|
|
logger.info("procesed_data")
|
|
logger.info(df.iloc[0].to_dict())
|
|
df["application_timestamp"] = df["application_timestamp"].astype(str)
|
|
# logger.info("prediction: %.8f", float(df['prediction'].iloc[0]))
|
|
result = post_processing(df)
|
|
# logger.info("Score: %.0f", float(result["hd_score_m1"]))
|
|
logger.info(result)
|
|
|
|
return result
|
|
|
|
# testing :
|
|
# __main__
|