import logging import numpy as np # Configure logging logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(name)s - %(message)s", ) logger = logging.getLogger(__name__) def post_processing(df): try: df['hd_score_m1'] = np.round( np.minimum(df['prediction'] * 100 + 0.00001, 1) * 85 + np.maximum(np.log2(df['prediction'] * 100 + 0.000001) * 185, 0), 0 ) logging.info(f"hd_score_m1 calculated: {df['hd_score_m1'].iloc[0]}") except Exception as e: logging.error(f"Error processing hd_score_m1 calculations: {e}") return df[['application_key', 'application_timestamp', 'deviceid', 'fuzzydeviceid', 'application_email_address', 'hd_score_m1']].iloc[0].to_dict()