Add G2 pipeline, models, and schema for g1_v1
This commit is contained in:
parent
e58625ad19
commit
9f3cb9ca4f
38
block.py
38
block.py
@ -1,8 +1,8 @@
|
||||
import logging
|
||||
from typing import List, Dict
|
||||
from graph_pre_processing import pre_processing
|
||||
from graph_processing import processing
|
||||
from graph_post_processing import post_processing
|
||||
from graph_pre_processing import pre_processing_g1, pre_processing_g2
|
||||
from graph_processing import processing_g1, processing_g2
|
||||
from graph_post_processing import post_processing_g1, post_processing_g2
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
@ -12,20 +12,30 @@ logging.basicConfig(
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def __main__(results: List[Dict]) -> List[Dict]:
|
||||
logger.info(f"data receiving in g1v1 block: {results}")
|
||||
data = pre_processing(results)
|
||||
logger.info(f"pre_processed_data, new_user_app_data: {data}")
|
||||
def __main__(results: List[Dict]) -> Dict:
|
||||
logger.info("data receiving in g1v1 block: %s", results)
|
||||
g1_input = pre_processing_g1(results)
|
||||
g2_input = pre_processing_g2(results)
|
||||
logger.info("pre_processed_data_g1: %s", g1_input)
|
||||
logger.info("pre_processed_data_g2: %s", g2_input)
|
||||
|
||||
# df = processing(data)
|
||||
if data.get("cluster_size", 2) < 2:
|
||||
data["prediction"] = 0
|
||||
cluster_size = g1_input.get("cluster_size", 2)
|
||||
if cluster_size is None:
|
||||
cluster_size = 2
|
||||
|
||||
if cluster_size < 2:
|
||||
g1_processed = {**g1_input, "prediction": 0}
|
||||
g2_processed = {**g2_input, "prediction_g2": 0}
|
||||
else:
|
||||
data = processing(data)
|
||||
logger.info("prediction: %.8f", float(data['prediction']))
|
||||
g1_processed = processing_g1(g1_input)
|
||||
g2_processed = processing_g2(g2_input)
|
||||
|
||||
# Post-processing: calculate the Final Score and update the dataframe.
|
||||
final = post_processing(data)
|
||||
logger.info("prediction_g1: %.8f", float(g1_processed.get("prediction", 0)))
|
||||
logger.info("prediction_g2: %.8f", float(g2_processed.get("prediction_g2", 0)))
|
||||
|
||||
final_g1 = post_processing_g1(g1_processed)
|
||||
final_g2 = post_processing_g2(g2_processed)
|
||||
final = {**final_g1, **final_g2}
|
||||
logger.info(final)
|
||||
|
||||
return final
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
import logging
|
||||
import math
|
||||
from decimal import Decimal, ROUND_HALF_UP
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
@ -8,7 +9,8 @@ logging.basicConfig(
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def post_processing(data):
|
||||
|
||||
def post_processing_g1(data):
|
||||
try:
|
||||
prediction = data.get("prediction", 0)
|
||||
score_g1 = round(
|
||||
@ -17,9 +19,9 @@ def post_processing(data):
|
||||
0
|
||||
)
|
||||
data["hd_score_g1"] = score_g1
|
||||
logger.info(f"score_g1 calculated: {score_g1}")
|
||||
logger.info("score_g1 calculated: %s", score_g1)
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing score_g1 calculations: {e}")
|
||||
logger.error("Error processing score_g1 calculations: %s", e)
|
||||
|
||||
return {
|
||||
key: data.get(key, None)
|
||||
@ -29,3 +31,25 @@ def post_processing(data):
|
||||
"app_dt_day_cnt", "hd_score_iso_m2"
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
def post_processing_g2(data):
|
||||
prediction = data.get("prediction_g2", data.get("prediction"))
|
||||
hd_score_g2 = None
|
||||
|
||||
try:
|
||||
if prediction is not None:
|
||||
prediction_val = float(prediction)
|
||||
raw_score = (prediction_val * 100) * 20 + math.log((prediction_val + 0.000001) * 100, 2) * 41.6
|
||||
# SQL-like rounding (half up)
|
||||
hd_score_g2 = int(Decimal(str(raw_score)).quantize(Decimal("1"), rounding=ROUND_HALF_UP))
|
||||
hd_score_g2 = max(hd_score_g2, 0.0)
|
||||
logger.info("score_g2 calculated: %s", hd_score_g2)
|
||||
except Exception as e:
|
||||
logger.error("Error processing score_g2 calculations: %s", e)
|
||||
|
||||
return {"hd_score_g2": hd_score_g2}
|
||||
|
||||
|
||||
# Backward compatibility alias
|
||||
post_processing = post_processing_g1
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
import logging
|
||||
import numpy as np
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
@ -7,7 +8,41 @@ logging.basicConfig(
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def pre_processing(results):
|
||||
G2_PREDICTORS = [
|
||||
"hd_score_m2",
|
||||
"rejected_app_count",
|
||||
"hd_score_m2_connected_max",
|
||||
"hd_score_m2_connected_avg",
|
||||
"applicant_age_connected_max",
|
||||
"applicant_age_connected_avg",
|
||||
"account_tel_first_seen_min_conn",
|
||||
"account_tel_first_seen_max_conn",
|
||||
"account_tel_first_seen_avg_conn",
|
||||
"ssn_hash_first_seen_min_conn",
|
||||
"ssn_hash_first_seen_avg_conn",
|
||||
"account_login_first_seen_min_conn",
|
||||
"digital_id_first_seen_max_conn",
|
||||
"true_ip_first_seen_min_conn",
|
||||
"true_ip_first_seen_max_conn",
|
||||
"dist_em_ip_ref_km_min_conn",
|
||||
"pct_acc_email_attr_challenged_1_conn",
|
||||
"account_login_first_seen_range_conn",
|
||||
"account_login_first_seen_stddev_conn",
|
||||
"cpu_clock_range_conn",
|
||||
"summary_risk_score_max_conn",
|
||||
]
|
||||
|
||||
|
||||
def _coerce_float(value):
|
||||
if value is None:
|
||||
return np.nan
|
||||
try:
|
||||
return float(value)
|
||||
except (TypeError, ValueError):
|
||||
return np.nan
|
||||
|
||||
|
||||
def pre_processing_g1(results):
|
||||
result = results[0]
|
||||
dtypes = {
|
||||
"hd_score_m1": float,
|
||||
@ -35,3 +70,22 @@ def pre_processing(results):
|
||||
data[col] = dtype(value) if value.replace(".", "", 1).isdigit() else None
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def pre_processing_g2(results):
|
||||
result = results[0]
|
||||
working = dict(result)
|
||||
if "rejected_app_count_g2" in working:
|
||||
# Always prefer the G2-specific count for G2 preprocessing
|
||||
working["rejected_app_count"] = working.get("rejected_app_count_g2")
|
||||
|
||||
data = {}
|
||||
for feature in G2_PREDICTORS:
|
||||
data[feature] = _coerce_float(working.get(feature))
|
||||
|
||||
data["cluster_size"] = working.get("cluster_size")
|
||||
return data
|
||||
|
||||
|
||||
# Backward compatibility alias
|
||||
pre_processing = pre_processing_g1
|
||||
|
||||
@ -11,24 +11,51 @@ logging.basicConfig(
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def processing(data):
|
||||
def processing_g1(data):
|
||||
df = pd.DataFrame([data])
|
||||
if df.empty:
|
||||
logger.error("Input DataFrame is empty.")
|
||||
|
||||
# Load Model
|
||||
model_path = "./xgboost_model.joblib"
|
||||
# model_path ="C:/Users/abinisha/habemco_flowx/g1_v1/xgboost_model.joblib"
|
||||
# model_path = "C:/Users/abinisha/habemco_flowx/g1_v1/xgboost_model_G1.joblib"
|
||||
model_path = "./xgboost_model_G1.joblib"
|
||||
model = joblib.load(model_path)
|
||||
|
||||
expected_features = model.feature_names
|
||||
|
||||
df = df.applymap(lambda x: float('nan') if x is None else x)
|
||||
df = df.applymap(lambda x: float("nan") if x is None else x)
|
||||
|
||||
dmatrix = xgb.DMatrix(df[expected_features], enable_categorical=True, missing=float('nan'))
|
||||
dmatrix = xgb.DMatrix(df[expected_features], enable_categorical=True, missing=float("nan"))
|
||||
|
||||
prediction = model.predict(dmatrix)
|
||||
|
||||
df['prediction'] = prediction
|
||||
df["prediction"] = prediction
|
||||
|
||||
return df.iloc[0].to_dict()
|
||||
|
||||
|
||||
def processing_g2(data):
|
||||
df = pd.DataFrame([data])
|
||||
if df.empty:
|
||||
logger.error("Input DataFrame is empty.")
|
||||
|
||||
# model_path = "C:/Users/abinisha/habemco_flowx/g1_v1/xgboost_model_G2.joblib"
|
||||
model_path = "./xgboost_model_G2.joblib"
|
||||
model = joblib.load(model_path)
|
||||
|
||||
expected_features = model.feature_names
|
||||
|
||||
df = df.reindex(columns=expected_features)
|
||||
df = df.applymap(lambda x: float("nan") if x is None else x)
|
||||
|
||||
dmatrix = xgb.DMatrix(df[expected_features], enable_categorical=True, missing=float("nan"))
|
||||
|
||||
prediction = model.predict(dmatrix)
|
||||
|
||||
df["prediction_g2"] = prediction
|
||||
|
||||
return df.iloc[0].to_dict()
|
||||
|
||||
|
||||
# Backward compatibility alias
|
||||
processing = processing_g1
|
||||
|
||||
@ -10,6 +10,10 @@
|
||||
"type": ["number", "null"],
|
||||
"description": "HD fraud Score G1"
|
||||
},
|
||||
"hd_score_g2": {
|
||||
"type": ["number", "null"],
|
||||
"description": "HD fraud Score G2"
|
||||
},
|
||||
"cluster_size_users_v2": {
|
||||
"type": ["number", "null"],
|
||||
"description": "Size of the user cluster in version 2."
|
||||
@ -36,6 +40,3 @@
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
@ -1,27 +1,46 @@
|
||||
import unittest
|
||||
import pandas as pd
|
||||
from block import __main__
|
||||
|
||||
|
||||
data = [{
|
||||
# "application_key": "0A123C7F-BE45-4912-8E22-0904707325E7",
|
||||
"hd_score_m1": 1211,
|
||||
"cluster_size_users_v2": 2,
|
||||
"target_connected_30_sum": 0,
|
||||
"email_cnt": 1,
|
||||
"rejected_app_count": 2,
|
||||
"app_dt_day_cnt": 2,
|
||||
"cluster_size": 3,
|
||||
"hd_score_iso_m2": 1202
|
||||
"application_key": "A3CDD39F-10F8-40B0-A4C9-0E1558B75131",
|
||||
"hd_score_m1": 1101.0,
|
||||
"hd_score_iso_m2": 1113,
|
||||
"cluster_size": 10,
|
||||
"cluster_size_users_v2": 3,
|
||||
"target_connected_30_sum": 0.0,
|
||||
"email_cnt": 3,
|
||||
"rejected_app_count": 6.0,
|
||||
"app_dt_day_cnt": 7,
|
||||
"hd_score_m2": 1188,
|
||||
"hd_score_m2_connected_max": 1197.0,
|
||||
"hd_score_m2_connected_avg": 1184.888889,
|
||||
"applicant_age_connected_max": 60.0,
|
||||
"applicant_age_connected_avg": 52.44444444,
|
||||
"account_tel_first_seen_min_conn": 879.0,
|
||||
"account_tel_first_seen_max_conn": 989.0,
|
||||
"account_tel_first_seen_avg_conn": 949.6666667,
|
||||
"ssn_hash_first_seen_min_conn": 5.0,
|
||||
"ssn_hash_first_seen_avg_conn": 58.0,
|
||||
"account_login_first_seen_min_conn": 0.0,
|
||||
"digital_id_first_seen_max_conn": 2652.0,
|
||||
"true_ip_first_seen_min_conn": 1857.0,
|
||||
"true_ip_first_seen_max_conn": 1967.0,
|
||||
"dist_em_ip_ref_km_min_conn": 17.43689023,
|
||||
"pct_acc_email_attr_challenged_1_conn": 0.0,
|
||||
"account_login_first_seen_range_conn": 2313.0,
|
||||
"account_login_first_seen_stddev_conn": 1042.4994,
|
||||
"cpu_clock_range_conn": 9054.0,
|
||||
"summary_risk_score_max_conn": 14.0
|
||||
}]
|
||||
|
||||
class TestBlock(unittest.TestCase):
|
||||
def test_main_success(self):
|
||||
blockResult = __main__(data)
|
||||
|
||||
# breakpoint()
|
||||
self.assertIsInstance(blockResult, dict, "Result should be a dictionary.")
|
||||
self.assertIn("hd_score_g1", blockResult, "Result dictionary should contain 'hd_score_g1' if success.")
|
||||
class TestBlock(unittest.TestCase):
|
||||
def test_main_returns_scores(self):
|
||||
block_result = __main__(data)
|
||||
self.assertIsInstance(block_result, dict)
|
||||
self.assertIn("hd_score_g1", block_result)
|
||||
self.assertIn("hd_score_g2", block_result)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
BIN
xgboost_model_G1.joblib
Normal file
BIN
xgboost_model_G1.joblib
Normal file
Binary file not shown.
BIN
xgboost_model_G2.joblib
Normal file
BIN
xgboost_model_G2.joblib
Normal file
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user