335 lines
13 KiB
Python
Raw Normal View History

2025-03-12 16:12:18 +00:00
import logging
2025-11-23 23:22:32 -05:00
2025-03-12 16:12:18 +00:00
import jmespath
2025-07-11 14:42:06 +00:00
import json_repair
2025-11-23 23:22:32 -05:00
import pandas as pd
import regex as re
from pre_processing import pre_processing_all
from processing import processing_all
from post_processing import post_processing_all
2025-07-11 14:42:06 +00:00
2025-03-12 16:12:18 +00:00
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s",
)
logger = logging.getLogger(__name__)
2025-11-23 23:22:32 -05:00
_JSON_LIKE = re.compile(r"^\s*\?*[\{\[].*[\}\]]\s*$", re.DOTALL)
2025-07-11 14:42:06 +00:00
2025-03-12 16:12:18 +00:00
def extract_value(blob, expression):
try:
return jmespath.search(expression, blob)
except Exception:
return None
2025-11-23 23:22:32 -05:00
2025-03-12 16:12:18 +00:00
def coalesce(*args):
for value in args:
if value is not None:
return value
return None
2025-07-11 14:42:06 +00:00
def deep_repair(obj):
# 1) If it's a string that *looks* like JSON (with or without one leading '?'),
# strip exactly one leading '?', reparses, and recurse.
if isinstance(obj, str):
s = obj.strip()
if _JSON_LIKE.match(s):
2025-11-23 23:22:32 -05:00
if s.startswith("?"):
2025-07-11 14:42:06 +00:00
s = s[1:]
parsed = json_repair.loads(s)
return deep_repair(parsed)
return obj
2025-11-23 23:22:32 -05:00
# 2) Dict recurse on each value
2025-07-11 14:42:06 +00:00
if isinstance(obj, dict):
return {k: deep_repair(v) for k, v in obj.items()}
2025-11-23 23:22:32 -05:00
# 3) List recurse on each element
2025-07-11 14:42:06 +00:00
if isinstance(obj, list):
return [deep_repair(v) for v in obj]
# 4) Otherwise, leave it alone
return obj
2025-03-12 16:12:18 +00:00
def sanitize_blob(blob):
try:
2025-07-11 14:42:06 +00:00
return deep_repair(blob)
except Exception as e:
logger.error("Failed to sanitize blob: %s", e)
2025-03-12 16:12:18 +00:00
return None
2025-11-23 23:22:32 -05:00
# Expressions to extract values (M1 + added M2 fields)
2025-03-12 16:12:18 +00:00
expressions = {
2025-11-23 23:22:32 -05:00
# M1 (existing)
2025-03-12 16:12:18 +00:00
"first_seen_days": [
2025-07-11 14:42:06 +00:00
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].first_seen_days)[0]",
2025-11-23 23:22:32 -05:00
'Blob."emailage.emailriskscore.first_seen_days"',
2025-07-11 14:42:06 +00:00
"Blob.tps_vendor_raw_response.query.results[0].first_seen_days",
2025-03-12 16:12:18 +00:00
],
"ea_score": [
2025-11-23 23:22:32 -05:00
"Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].EAScore",
2025-07-11 14:42:06 +00:00
'Blob."emailage.emailriskscore.eascore"',
2025-11-23 23:22:32 -05:00
"Blob.tps_vendor_raw_response.query.results[0].EAScore",
2025-03-12 16:12:18 +00:00
],
"email_creation_days": [
2025-11-23 23:22:32 -05:00
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].email_creation_days)[0]",
2025-07-11 14:42:06 +00:00
"Blob.tps_vendor_raw_response.query.results[0].email_creation_days",
2025-03-12 16:12:18 +00:00
],
2025-07-11 14:42:06 +00:00
"summary_risk_score": ["Blob.summary_risk_score"],
"digital_id_trust_score_rating": ["Blob.digital_id_trust_score_rating"],
"os_version": ["Blob.os_version"],
"account_email_worst_score": ["Blob.account_email_worst_score"],
"true_ip_score": ["Blob.true_ip_score"],
2025-03-12 16:12:18 +00:00
"ip_net_speed_cell": [
2025-11-23 23:22:32 -05:00
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].ip_netSpeedCell)[0]",
2025-07-11 14:42:06 +00:00
"Blob.tps_vendor_raw_response.query.results[0].ip_netSpeedCell",
],
"account_email_score": ["Blob.account_email_score"],
"true_ip_worst_score": ["Blob.true_ip_worst_score"],
"proxy_ip_worst_score": ["Blob.proxy_ip_worst_score"],
"proxy_ip_score": ["Blob.proxy_ip_score"],
"fuzzy_device_score": ["Blob.fuzzy_device_score"],
"ip_region_confidence": [
2025-11-23 23:22:32 -05:00
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].ip_regionconf)[0]",
2025-07-11 14:42:06 +00:00
"Blob.tps_vendor_raw_response.query.results[0].ip_regionconf",
2025-01-17 16:20:44 +00:00
],
2025-07-11 14:42:06 +00:00
"true_ip_state_confidence": ["Blob.true_ip_state_confidence"],
"fuzzy_device_worst_score": ["Blob.fuzzy_device_worst_score"],
"digital_id_confidence_rating": ["Blob.digital_id_confidence_rating"],
2025-11-23 23:22:32 -05:00
"trueipgeo": ["TrueIpGeo", "Blob.true_ip_geo"],
# M2 additions
"policy_score": ["Blob.policy_score"],
"digital_id_trust_score": ["Blob.digital_id_trust_score"],
"proxy_score": ["Blob.proxy_score"],
"browser_spoof_score": ["Blob.browser_spoof_score"],
"input_ip_connection_type": ["Blob.input_ip_connection_type"],
"fuzzy_device_id_confidence": ["Blob.fuzzy_device_id_confidence"],
"fraudrisk": [
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].fraudRisk)[0]",
"Blob.tps_vendor_raw_response.query.results[0].fraudRisk",
'Blob."emailage.emailriskscore.fraudRisk"',
],
"overalldigitalidentityscore": [
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].overallDigitalIdentityScore)[0]",
"Blob.tps_vendor_raw_response.query.results[0].overallDigitalIdentityScore",
'Blob."emailage.emailriskscore.overallDigitalIdentityScore"',
],
"totalhits": [
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].totalhits)[0]",
"Blob.tps_vendor_raw_response.query.results[0].totalhits",
'Blob."emailage.emailriskscore.totalhits"',
],
"uniquehits": [
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].uniquehits)[0]",
"Blob.tps_vendor_raw_response.query.results[0].uniquehits",
'Blob."emailage.emailriskscore.uniquehits"',
],
"emailtofullnameconfidence": [
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].emailToFullNameConfidence)[0]",
"Blob.tps_vendor_raw_response.query.results[0].emailToFullNameConfidence",
'Blob."emailage.emailriskscore.emailToFullNameConfidence"',
],
"emailtolastnameconfidence": [
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].emailToLastNameConfidence)[0]",
"Blob.tps_vendor_raw_response.query.results[0].emailToLastNameConfidence",
'Blob."emailage.emailriskscore.emailToLastNameConfidence"',
],
"domain_creation_days": [
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].domain_creation_days)[0]",
"Blob.tps_vendor_raw_response.query.results[0].domain_creation_days",
'Blob."emailage.emailriskscore.domain_creation_days"',
],
"iptophoneconfidence": [
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].ipToPhoneConfidence)[0]",
"Blob.tps_vendor_raw_response.query.results[0].ipToPhoneConfidence",
'Blob."emailage.emailriskscore.ipToPhoneConfidence"',
],
"di_autofill_count_login": [
"Blob.tmx_variables.di_autofill_count_login",
"Blob.policy_details_api.policy_detail_api.customer.rules.vars.variable.di_autofill_count_login",
],
"accphone_gbl_velocity_hour": [
"Blob.tmx_variables.accphone_gbl_velocity_hour",
"Blob.tmx_variables._accphone_gbl_velocity_hour",
],
# Lat/long fields for distance engineering
"ip_latitude": [
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].ip_latitude)[0]",
"Blob.tps_vendor_raw_response.query.results[0].ip_latitude",
],
"ip_longitude": [
"(Blob.integration_hub_results.*.tps_vendor_raw_response.query.results[0].ip_longitude)[0]",
"Blob.tps_vendor_raw_response.query.results[0].ip_longitude",
],
"tps_ip_latitude": ["Blob.tps_vendor_raw_response.query.results[0].ip_latitude"],
"tps_ip_longitude": ["Blob.tps_vendor_raw_response.query.results[0].ip_longitude"],
"true_ip_latitude": ["Blob.true_ip_latitude"],
"true_ip_longitude": ["Blob.true_ip_longitude"],
"proxy_ip_latitude": ["Blob.proxy_ip_latitude"],
"proxy_ip_longitude": ["Blob.proxy_ip_longitude"],
"dns_ip_latitude": ["Blob.dns_ip_latitude"],
"dns_ip_longitude": ["Blob.dns_ip_longitude"],
"input_ip_latitude": ["Blob.input_ip_latitude"],
"input_ip_longitude": ["Blob.input_ip_longitude"],
# First-seen timestamps for age deltas
"digital_id_first_seen": ["Blob.digital_id_first_seen"],
"account_email_first_seen": ["Blob.account_email_first_seen"],
"account_login_first_seen": ["Blob.account_login_first_seen"],
"account_telephone_first_seen": ["Blob.account_telephone_first_seen"],
"true_ip_first_seen": ["Blob.true_ip_first_seen"],
"ssn_hash_first_seen": ["Blob.ssn_hash_first_seen"],
"fuzzy_device_first_seen": ["Blob.fuzzy_device_first_seen"],
"national_id_first_seen": ["Blob.national_id_first_seen"],
"proxy_ip_first_seen": ["Blob.proxy_ip_first_seen"],
# Attribute arrays (used for one-hot style parsing)
"account_name_activities": ["Blob.account_name_activities"],
"account_email_attributes": ["Blob.account_email_attributes"],
"true_ip_attributes": ["Blob.true_ip_attributes"],
"true_ip_activities": ["Blob.true_ip_activities"],
"digital_id_attributes": ["Blob.digital_id_attributes"],
"account_telephone_attributes": ["Blob.account_telephone_attributes"],
"cpu_clock": ["Blob.cpu_clock"]
2025-03-12 16:12:18 +00:00
}
def __main__(
2025-07-11 14:42:06 +00:00
# Application->
2025-03-12 16:12:18 +00:00
application_key: str,
application_timestamp: str,
2025-07-11 14:42:06 +00:00
application_ssn: str,
2025-03-12 16:12:18 +00:00
application_email_address: str,
application_bank_account_number: str,
application_is_rejected: str,
application_date_of_birth: str,
2025-07-11 14:42:06 +00:00
# uprovaloanapplication->
educationlevel: str,
2025-03-12 16:12:18 +00:00
employmentstatus: str,
lengthatbank: str,
lengthatjob: str,
ownhome: str,
payfrequency: str,
monthsatresidence: str,
2025-03-31 12:36:37 +00:00
state: str,
2025-03-31 13:53:20 +00:00
zip: str,
2025-07-11 14:42:06 +00:00
# thxresponse->
2025-03-12 16:12:18 +00:00
EventType: str,
DigitalIdConfidence: str,
RiskRating: str,
TmxSummaryReasonCode: str,
TrueIpGeo: str,
2025-07-11 14:42:06 +00:00
Blob: str,
DeviceId: str,
2025-11-23 23:22:32 -05:00
FuzzyDeviceId: str,
ReasonCode: str,
2025-07-11 14:42:06 +00:00
) -> dict:
2025-03-12 16:12:18 +00:00
# Convert input parameters into a flat dictionary
data = {
2025-07-11 14:42:06 +00:00
"application_key": application_key,
"application_timestamp": application_timestamp,
"application_ssn ": application_ssn,
"application_email_address": application_email_address,
"application_bank_account_number": application_bank_account_number,
"application_is_rejected": application_is_rejected,
"application_date_of_birth": application_date_of_birth,
"educationlevel": educationlevel,
"employmentstatus": employmentstatus,
"lengthatbank": lengthatbank,
"lengthatjob": lengthatjob,
"ownhome": ownhome,
"payfrequency": payfrequency,
"monthsatresidence": monthsatresidence,
"state": state,
"zip": zip,
"EventType": EventType,
"DigitalIdConfidence": DigitalIdConfidence,
"RiskRating": RiskRating,
"TmxSummaryReasonCode": TmxSummaryReasonCode,
"TrueIpGeo": TrueIpGeo,
"Blob": Blob,
"DeviceId": DeviceId,
2025-11-23 23:22:32 -05:00
"FuzzyDeviceId": FuzzyDeviceId,
"ReasonCode": ReasonCode,
2025-03-12 16:12:18 +00:00
}
# Convert dictionary to a single-row DataFrame
combined_df = pd.DataFrame([data])
combined_df.columns = combined_df.columns.str.lower()
2025-11-23 23:22:32 -05:00
# Uncomment Below For Testing using Uprova Batch Data
# combined_df["educationlevel"] = None
# combined_df["monthsatresidence"] = None
# combined_df["ownhome"] = False
# combined_df['lengthatbank'] = 0
2025-03-12 16:12:18 +00:00
combined_df["application_email_address"] = combined_df["application_email_address"].str.lower()
if Blob:
combined_df["blob"] = combined_df["blob"].apply(sanitize_blob)
# Step 2: Extract values using the expressions dictionary
for column, expressions_list in expressions.items():
2025-11-23 23:22:32 -05:00
def _extract_with_fallback(blob_obj):
values = []
for expr in expressions_list:
val = extract_value(blob_obj, expr)
if val is None and isinstance(expr, str) and expr.startswith("Blob."):
val = extract_value(blob_obj, expr[len("Blob.") :])
values.append(val)
return coalesce(*values)
extracted = combined_df["blob"].apply(_extract_with_fallback)
if column in combined_df.columns:
combined_df[column] = extracted.where(extracted.notnull(), combined_df[column])
else:
combined_df[column] = extracted
2025-03-12 16:12:18 +00:00
2025-11-23 23:22:32 -05:00
# logger.info("pre_flowx data")
# logger.info(combined_df.iloc[0].drop("blob").to_dict())
2025-03-12 16:12:18 +00:00
else:
2025-11-23 23:22:32 -05:00
for column in expressions:
2025-03-12 16:12:18 +00:00
combined_df[column] = None
2025-11-23 23:22:32 -05:00
# logger.info("pre_flowx data")
# logger.info(combined_df.iloc[0].to_dict())
df_m1, df_m2, df_thx = pre_processing_all(combined_df)
# logger.info("pre_processed data m1")
# logger.info(df_m1.iloc[0].to_dict())
# logger.info("pre_processed data m2")
# logger.info(df_m2.iloc[0].to_dict())
processed_m1, processed_m2, df_thx = processing_all(df_m1, df_m2, df_thx)
# logger.info("processed_data m1")
# logger.info(processed_m1.iloc[0].to_dict())
# logger.info("processed_data m2")
# logger.info(processed_m2.iloc[0].to_dict())
result = post_processing_all(processed_m1, processed_m2, df_thx)
2025-03-31 12:36:37 +00:00
# State Check
state_value = combined_df["state"].iloc[0]
2025-03-31 13:53:20 +00:00
zip_value = combined_df["zip"].iloc[0]
2025-11-23 23:22:32 -05:00
if (pd.notnull(state_value) and state_value == "ZZ") or (
pd.notnull(zip_value) and zip_value == "86445"
):
2025-03-31 12:36:37 +00:00
result["hd_score_m1"] = 1250
2025-11-23 23:22:32 -05:00
result["hd_score_m2"] = 1250
result["hd_score_iso_m2"] = 1250
# logger.info("post_processed_data after state check")
# logger.info(result)
2025-03-12 16:12:18 +00:00
2025-11-23 23:22:32 -05:00
# Normalize numeric scores to built-in float so JSON encoding (e.g. Temporal)
# does not fail on NumPy scalar types like np.float32/np.float64.
for key in ("hd_score_m1", "hd_score_m2", "hd_score_iso_m2"):
if key in result and result[key] is not None:
try:
result[key] = float(result[key])
except (TypeError, ValueError):
logger.warning("Failed to cast %s=%r to float", key, result[key])
2025-03-12 16:12:18 +00:00
2025-11-23 23:22:32 -05:00
print(result)
return result