2025-03-12 16:15:38 +00:00
|
|
|
import logging
|
|
|
|
|
from rules_processing import processing
|
2025-01-17 16:20:44 +00:00
|
|
|
|
2025-03-12 16:15:38 +00:00
|
|
|
# Configure logging
|
|
|
|
|
logging.basicConfig(
|
|
|
|
|
level=logging.INFO,
|
|
|
|
|
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s",
|
|
|
|
|
)
|
|
|
|
|
logger = logging.getLogger(__name__)
|
2025-01-17 16:20:44 +00:00
|
|
|
|
2025-03-12 16:15:38 +00:00
|
|
|
def __main__(
|
|
|
|
|
hd_score_m1: float,
|
|
|
|
|
hd_score_g1: float,
|
|
|
|
|
cluster_size_users_v2: int,
|
|
|
|
|
target_connected_30_sum: float,
|
|
|
|
|
email_cnt: int,
|
|
|
|
|
rejected_app_count: float,
|
|
|
|
|
app_dt_day_cnt: int,
|
2025-11-26 11:55:08 -05:00
|
|
|
hd_score_iso_m2: float,
|
|
|
|
|
hd_score_g2: float
|
2025-03-12 16:15:38 +00:00
|
|
|
) -> dict:
|
|
|
|
|
# Create a dictionary instead of using pandas DataFrame
|
|
|
|
|
data = {
|
|
|
|
|
"hd_score_m1": hd_score_m1,
|
|
|
|
|
"hd_score_g1": hd_score_g1,
|
|
|
|
|
"cluster_size_users_v2": cluster_size_users_v2,
|
|
|
|
|
"target_connected_30_sum": target_connected_30_sum,
|
|
|
|
|
"email_cnt": email_cnt,
|
|
|
|
|
"rejected_app_count": rejected_app_count,
|
|
|
|
|
"app_dt_day_cnt": app_dt_day_cnt,
|
2025-11-23 23:39:01 -05:00
|
|
|
"hd_score_iso_m2": hd_score_iso_m2,
|
2025-11-26 11:55:08 -05:00
|
|
|
"hd_score_g2": hd_score_g2
|
2025-03-12 16:15:38 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
final = processing(data)
|
|
|
|
|
logger.info(f"scores of application: {final}")
|
|
|
|
|
|
|
|
|
|
return final
|